Cloned gtfA gene of Streptococcus mutans LM7 alters glucan synthesis in Streptococcus sanguis.
نویسندگان
چکیده
Streptococcus mutans LM7 (Bratthall serotype e) chromosomal DNA was partially digested with EcoRI and ligated into the positive-selection plasmid vector pOP203(A2+). The ligation mixture was transformed into Escherichia coli, and transformants were selected for tetracycline resistance. Recombinant-bearing clones were screened for their ability to ferment raffinose, using the procedure of Robeson et al. (J. Bacteriol. 153:211-221, 1983). One raffinose-fermenting clone was isolated and found to contain a plasmid with an insert consisting of four EcoRI fragments totalling approximately 10.3 kilobases (kb). This strain was capable of growth on defined medium plus raffinose or sucrose and generated reducing sugars from a sucrose substrate. Southern hybridization analysis of the four EcoRI fragments revealed homology not only to S. mutans LM7 chromosomal DNA but also to S. mutans serotypes b, c, and f. Subcloning of this fragment array into a streptococcal E. coli shuttle vector indicated that a 2.4-kb EcoRI fragment was essential for sucrase activity. E. coli minicell experiments revealed a gene product of 55 kilodaltons. These data along with restriction endonuclease analysis and Southern hybridizations suggested that the cloned S. mutans LM7 gene was closely related to the gtfA gene cloned by Robeson et al. from S. mutans PS13 (Bratthall serotype c). The shuttle plasmid containing the 2.4-kb fragment was transformed into Streptococcus sanguis, which subsequently displayed increased sucrase activity in both intracellular and extracellular fractions. Elevated levels of synthesis of alcohol-insoluble and water-insoluble glucans were observed with crude extracellular fractions of the S. sanguis strain bearing the 2.4-kb fragment. An isolate cured of the shuttle plasmid plus the 2.4-kb fragment displayed wild-type S. sanguis glucan synthesis. In S. sanguis, this gtfA allele may play a role in glucan synthesis by interacting with extant high-molecular-weight glucosyltransferases.
منابع مشابه
Expression of a Streptococcus mutans glucosyltransferase gene in Escherichia coli.
Chromosomal DNA from Streptococcus mutans strain UAB90 (serotype c) was cloned into Escherichia coli K-12. The clone bank was screened for any sucrose-hydrolyzing activity by selection for growth on raffinose in the presence of isopropyl-beta-D-thiogalactoside. A clone expressing an S. mutans glucosyltransferase was identified. The S. mutans DNA encoding this enzyme is a 1.73-kilobase fragment ...
متن کاملAnalysis of the virulence of Streptococcus mutans serotype c gtfA mutants in the rat model system.
The Streptococcus mutans serotype c gtfA gene encodes a 55-kilodalton protein which catalyzes the synthesis of a small glucan (1.5 kilodaltons) from sucrose (J.P. Robeson, R.G. Barletta, and R. Curtiss III, J. Bacteriol. 153:211-221, 1983). To investigate the role of the GtfA enzyme in virulence, we constructed S. mutans gtfA mutants from three cariogenic serotype c strains. A plasmid that carr...
متن کاملMolecular cloning and characterization of the glucosyltransferase C gene (gtfC) from Streptococcus mutans LM7.
A glucosyltransferase (GTF) gene, designated gtfC, was cloned from Streptococcus mutans LM7. Its gene product was detected by screening a bacteriophage lambda library with rabbit antiserum raised against S. mutans LM7 extracellular proteins. DNA isolated from the immunopositive recombinant phage revealed two S. mutans chromosomal EcoRI fragment inserts, 8.1 and 4.7 kilobase pairs in size. Esche...
متن کاملCloning and characterization of Streptococcus mutans LM7 plasmid pAM7.
The 5.6-kilobase-pair cryptic plasmid, pAM7, of Streptococcus mutans LM7 was cloned into Escherichia coli plasmids or a shuttle plasmid to examine whether the plasmid encodes bacteriocin. Plasmid pAM7 encoded proteins with molecular weights of 30,000, 22,000, and 12,000, but none of them appeared to be bacteriocin.
متن کاملRole of the Streptococcus mutans gtf genes in caries induction in the specific-pathogen-free rat model.
The role of each of the Streptococcus mutans gtf genes coding for glucan synthesis in cariogenesis was evaluated by using strain UA130 in the specific-pathogen-free (SPF) rat model system. Mutants defective in either or both of the genes required for insoluble glucan synthesis, the gtfB and gtfC genes, exhibited markedly reduced levels of smooth-surface carious lesions relative to that of the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 48 3 شماره
صفحات -
تاریخ انتشار 1985